
Illustration of Hudson’s algorithm

Fig. 1 shows an illustration of Hudson’s algorithm for a sample of four individ-
uals. In this illustration we show the state of the algorithm and its effects on
the marginal trees after every event. The state of the algorithm is fully defined
by the ancestral lineages (defined by the segments of ancestral material that
they carry), the next available node w and the current time t. Although it is
not necessary to store the partially built genealogies in memory, we show them
here in the lower part of each panel for clarity. The left-to-right axis represents
genomic coordinates. We also show the current time (t) and the number of
potential recombination breakpoints (B) in each panel.

In this example, we have simulated the ancestry of the sample for a sequence
of 10 sites. The initial state of the simulation at time 0 is shown in panel
(a), where we see four lineages corresponding to our sampled chromosomes.
Lineage l1 can be represented as the segment (0, 10, 1), which states that over the
genomic interval [0, 10), the lineage occupies the tree node 1. This information is
shown explicitly in the figure, where we draw the full range of each segment and
label the line with the node with which it is associated. Nodes are colour-coded,
so that we can easily see which tree nodes are associated with each segment.
Since this is the initial state of the algorithm, the only tree nodes defined are the
leaf nodes. This is shown in the bottom part of the panel, where we draw out
the nodes of the trees that have been assigned so far. (The nodes are ordered in
these panels such that they are consistent with the orderings induced by later
events.)

The first event that we encounter as we go backwards in time is a recom-
bination event which occurs at time t = 0.007. Panel (b) shows the state of
the simulation immediately after this event. Recombination has split lineage l3,
resulting in two new lineages, l5 and l6. As the breakpoint was at 2, we have
l5 = (0, 2, 3) and l6 = (2, 10, 3). The other effect of this recombination event is
to create a new tree: since the histories of the sample over the intervals [0, 2) and
[2, 10) can now be different, we must create a new tree to record these histories
as they are simulated. (Note again that these trees are shown for illustration
only; they are not stored in the simulation.)

After the recombination in event (b), a common ancestor event occurs in (c)
in which l4 and l6 are merged to form a common ancestor l7. At a common
ancestor event we merge the ancestral material from two lineages. Any non-
overlapping segments are copied directly into the new lineage. In this example,
only one of the lineages carried ancestral material in the interval [0, 2), and so
this is copied directly to the common ancestor. However, in the interval [2, 10)
both carry ancestral material, and so a coalescence occurs. In this coalescence,
nodes 3 and 4 have a common ancestor in the interval [2, 10). We therefore
create a new node 5, and update the tree covering the interval [2, 10) to reflect
this.

The simulation continues generating common ancestor and recombination
events at the relevant rates until complete genealogies have been generated
across the entire sequence. Termination of the algorithm is controlled by keep-

1



0 5 10 0 5 10

(a) t = 0.000 B = 36

l1 1
l2 2
l3 3
l4 4

1 23 4

(b) t = 0.007 B = 35 RE

l1 1
l2 2
l5 3
l4 4
l6 3

1 23 4 1 2 3 4

(c) t = 0.071 B = 28 CA

l1 1
l2 2
l5 3
l7 4 5

1 23 4 1 2 3 4

5

(d) t = 0.090 B = 19 CA

l1 1
l5 3
l8 6

1 23 4

6

1 2 3 4

5

6

(e) t = 0.135 B = 18 RE

l9 1
l5 3
l8 6
l10 1

1 23 4

6

1 2 3 4

5

6

1 2 3 4

5

6

(f) t = 0.170 B = 12 CA

l5 3
l10 1
l11 7 6

1 23 4

6

7

1 2 3 4

5

6

7

1 2 3 4

5

6

(g) t = 0.202 B = 2 CA

l5 3
l12 7

1 23 4

6

7

1 2 3 4

5

6

7

1 2 3 4

5

6

8

(h) t = 0.253 B = 0 CA

1 23 4

6

7

9

1 2 3 4

5

6

7

1 2 3 4

5

6

8

Figure 1: An illustration of Hudson’s algorithm using sparse trees. In each
panel we show the state of the algorithm after an event. Events are either
recombination (RE) or common ancestor (CA). On the top of each panel, every
line represents an ancestor which may be composed of several distinct segments.
The bottom of each panel shows the state of the trees at that point in time.
The horizontal direction represents genomic coordinates.

2



l r u c t
1 2 10 5 (3, 4) 0.071
2 0 2 6 (2, 4) 0.090
3 2 10 6 (2, 5) 0.090
4 0 7 7 (1, 6) 0.170
5 7 10 8 (1, 6) 0.202
6 0 2 9 (3, 7) 0.253

Table 1: Tabular representation of the coalescence records output by the sim-
ulation in Fig. 1. The corresponding index vectors are I = (2, 4, 6, 1, 3, 5) and
O = (6, 2, 4, 5, 3, 1).

ing track of the amount of ancestral material present in each distinct interval
produced by recombination. An important aspect of Hudson’s algorithm is that
we do not continue to track the ancestry of segments in which the trees are
already complete. An example of this can be seen in panel (f) of Fig. 1. In this
event lineages l8 and l9 have merged to form l11. In the interval [0, 7), these
have overlapping ancestral material and we therefore create a new node 7 and
update the trees covering [0, 2) and [2, 7) to show that node 7 is the parent of 1
and 6. However, we note that the tree covering the interval [2, 7) is complete as
a result, and so we omit the segment mapping to the new node over this inter-
val. This process is important for efficiency, as we would continue to generate
recombination and common ancestor events for the segment, even though these
events could not effect the genealogy over this interval.

Panel (f) also illustrates the concept of trapped material. Lineage l11 consists
of the two segments (0, 2, 7) and (7, 10, 6). Recombination events occurring
anywhere in [0, 10) on this lineage will therefore result in a different arrangement
of ancestral material. The total number of possible recombination breakpoints
for l11 is therefore 9. In contrast, there are only 2 possible breakpoints for
l10, since any recombination that occurs in [0, 7) cannot affect the ancestral
material. Similarly l5 has only one potential breakpoint, and so the total number
of potential breakpoints B = 12.

3


